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We present an exact solution to the problem of the global shape description of a spherical vesicle distorted
by a grafted latex bead. This solution is derived by treating the nonlinearity in bending elasticity through the
�topological� Bogomol’nyi decomposition technique and elastic compatibility. We recover the “hat-model”
approximation in the limit of a small latex bead and find that the region antipodal to the grafted latex bead
flattens. We also derive the appropriate shape equation using the variational principle and relevant constraints.
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I. INTRODUCTION

Encapsulation, binding, and adsorption of particles onto a
membrane play an important role in biological processes. A
prominent issue in the context of vesicles is the understand-
ing of long-range phenomena connected to the inclusion of
mesoscopic particles in their membrane �1–5�. The differ-
ence in scale between the vesicle’s membrane thickness and
the long-range limit �e.g., vesicle size� allows the vesicle to
be described as an embedded surface. The description of a
vesicle’s membrane behavior in the long-range limit is cur-
rently founded on the concept of bending elasticity �6–9�.
Recently the Bogomol’nyi decomposition technique �10,11�
has emerged as a promising theoretical framework to study
long-range, nonlinear elastic phenomena in soft-condensed
matter �12–15�.

Exact solutions to nonlinear models offer novel insights
into physical systems not at first unveiled by approximate
approaches. Therefore our goal here is to derive and discuss
an exact solution, which is motivated by the experimental
observation of a spherical vesicle distorted by a grafted latex
bead �4�, within the Bogomol’nyi framework combined with
elastic compatibility and a global constraint. To this end, in
the next section we introduce the bending Hamiltonian, de-
scribe the fundamental theorem of surface theory, introduce
the Bogomol’nyi decomposition technique, and impose a
conformally invariant global constraint meant to mimic the
total mean curvature, area, and/or volume constraints. In Sec.
III we invoke the variational principle to derive the relevant
shape equation. In Sec. IV we derive an exact solution for
the deformation of the vesicle in the presence of a grafted
latex bead at its north pole. This solution is obtained by
noticing that the polar angle of the outward surface normal is
a kink soliton solution of the double sine-Gordon equation.
We also discuss the resultant geometric frustration. We sum-
marize our main findings in Sec. V. Finally, the details of the
metric and shape tensors in isometric azimuthal coordinates

are given in Appendix A, whereas the shape equation is dis-
cussed in Appendix B.

II. MODEL

A. Preliminaries

In order to take advantage of the Bogomol’nyi technique,
we should describe the vesicle shape within a covariant field
theory �14,15�. According to the fundamental theorem of sur-
face theory �16,17�, any embedded surface is perfectly rep-
resented by a pair of symmetric second-rank tensors coupled
to each other by integrability conditions: a prescribed metric
tensor gij coupled to a prescribed shape tensor bij via elastic
compatibility conditions. Within this framework, the bending
Hamiltonian suggested by Canham �6� reads

Hb�S� � 1
2k�

S
dS bijb

ij , �1�

which depends on the vesicle shape S through the prescribed
pair �gij ,bij� and on the phenomenological bending rigidity
k. We have adopted the Einstein summation convention �18�,
and used customary notation: the integral runs over the sur-
face manifold S with surface element dS=dx2��g�, where �g�
represents the determinant det�gij� and x the set of arbitrary
intrinsic coordinates. Since the roundness of the grafted latex
bead imposes axisymmetric deformations, we focus on
vesicles of revolution. In a recent work �15�, we have shown
that, for surfaces of revolution, the isometric azimuthal co-
ordinates �u ,�� are a relevant choice, which not only drasti-
cally simplifies formulas related to the fundamental theorem
of surface theory but also elucidates the application of the
Bogomol’nyi technique to the bending Hamiltonian �1�.

B. Fundamental theorem of surface theory

Working with abstract manifolds described by a param-
etrized metric tensor gij is common in general relativity �19�:
when the abstract manifold is embedded, the metric tensor
gij may be coupled with a shape tensor bij. For embedded
bidimensional abstract manifolds, the coupling occurs
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through integrability conditions �the Gauss-Codazzi equa-
tions� and a system of differential equations to integrate �the
Gauss-Weingarten equations under appropriate additional
conditions�: this is the substance on which the statement and
the proof of the fundamental theorem of surface theory are
based �16,17�. Following the fundamental theorem of surface
theory allows us to claim that any pair of diagonal second-
rank tensors �gij ,bij�, which in isometric azimuthal coordi-
nates �u ,��, takes the form

guu = g�� = e2��u�, �2�

buu = − e��u��u��u� and b�� = − e��u� sin ��u� , �3�

and obeys the elastic compatibility condition

�u��u� = cos ��u� , �4�

where the local Weyl gauge field � and the polar angle � of
the outward surface normal are sufficiently differentiable
functions of u, corresponds to a unique axisymmetric surface
S—modulo its position in space. Detailed in Appendix A,
the demonstration consists in showing that the associated
Gauss-Weingarten equations under appropriate additional
conditions determine a unique surface of revolution modulo
an arbitrary rigid motion. In simple terms, straightforward
successive integrations �computational chain �A32�–�A50��
reduce the set of differential equations to integrate
��A26�–�A28�� to the pair of equations

r�u� = e��u�, �5�

�uz�u� = − e��u� sin ��u� , �6�

where r�u� and z�u� are, respectively, the radius and the
height of the axisymmetric surface in cylindrical parametri-
zation. Formula �5� is a reparametrization that gives a pos-
teriori a second interpretation to �. In short, for abstract
surfaces of revolution �2�–�3�, the integrability conditions re-
duce to the single condition �4� while the system of differ-
ential equations to be integrated simplifies to the single Eq.
�6�. Therefrom, the bending Hamiltonian �1� can be written
as

Hb�S� = �k�
P
du 	��u��u��2 + sin2 ��u�
 , �7�

where the integral runs along the profile P of the axisymmet-
ric surface S.

C. Bogomol’nyi decomposition

The Bogomol’nyi technique allows us to resolve the
Hamiltonian �1� into a perfect square Hamiltonian and a to-
pological bound �14,15�: for spherical surfaces of revolution
S0, the decomposition reads �15�

Hb�S0� = �k�
P
du ��u��u� − sin ��u��2 + 4�k , �8�

which readily saturates the bound when the polar angle �
satisfies the first-order nonlinear differential equation �15�:

�u��u� = sin ��u� . �9�

The centered solution of Eq. �9� is the aperiodic sine-Gordon
kink:

��u� = 2 arctan eu. �10�

As expected �14,15�, the axisymmetric surface obtained by
integrating the related Gauss-Weingarten equations under ap-
propriate conditions �Appendix A� is the round sphere, in
cylindrical parametrization,

r�u� = sech u, z�u� = − tanh u , �11�

the isometric coordinate u running from −� to +�. This re-
markable result has encouraged us �15� to envision deformed
spherical vesicles of revolution as frustrated or unsaturated
sine-Gordon kinks �15,20,21�.

D. System of investigation

Now let us assume a “bare” spherical vesicle of revolu-
tion distorted by a round latex bead chemically grafted at its
north pole �4�. By bare, we mean that only the bending en-
ergy �1� is considered. Furthermore, to mimic the total mean
curvature, area and/or volume constraints �9,22�, we impose
the following covariantlike global constraint:

�
S
dS �g�−1/2 = const . �12�

As the metric determinant �g� is not a �covariant� scalar, the
global constraint �12� is not covariant: in other words, be-
cause it depends on the choice of coordinates, the global
constraint �12� is apparently unphysical. On the other hand,
the particular choice of the exponent applied to the metric
determinant �g� renders the global constraint �12� locally in-
variant under conformal transformations: hence, contrary to
the �physical� area and/or volume constraints, the �unphysi-
cal� global constraint �12� is conformally invariant just like
the bending Hamiltonian �1�. Also the intuitive motivation
behind the choice of Eq. �12� as a global constraint appears
naturally in isometric azimuthal coordinates �u ,�� as then
we have

2��
P
du = const . �13�

Thus, ultimately our system is governed by the Hamiltonian
�7� �or �8�� which must be minimized subject to the elastic
compatibility condition �4�, to the geometrical confinement
�6�, and to the global constraint �13�.

III. SPHERICAL SHAPE EQUATION

A. Variational principle

Applying the method of Lagrange multipliers for differ-
ential equation constraints and integral constraints �23� gives
the unconstrained functional
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I�S� = �k�
P
du 	��u��u��2 + sin2 ��u�


+ 2�k�
P
du ��u��cos ��u� − �u��u��

+ 2�k�
P
du ��u���uz�u� + e��u�sin ��u��

+ 2�k 	�
P

du , �14�

where � and � are local Lagrange multipliers while 	 is a
global Lagrange multiplier. Whereas the Euler-Lagrange
equations derived from the functional �14� by varying with
respect to � and � reproduce, respectively, the elastic com-
patibility condition �4� and the geometrical confinement �6�
as required, the ones with respect to �, �, and z are, respec-
tively,

�u��u� = − ��u�e��u� sin ��u� , �15a�

�uu��u� = sin ��u�cos ��u� − ��u�sin ��u�

+ ��u�e��u�cos ��u� , �15b�

�u��u� = 0. �15c�

Furthermore, since the integrand of the functional �14� does
not depend explicitly on the variable of integration u, the
Beltrami identity �23� may be computed; it yields

− 1
2 ��u��u��2 + 1

2sin2 ��u� + ��u�cos ��u�

+ ��u�e��u� sin ��u� + 	 = J , �16�

with J a constant of integration. On the other hand, at the
boundary �P, arbitrary small variations of �, �, z, and
u—denoted by 
�, 
�, 
z, and 
u, respectively—must hold:

���u�
��u���P = 0, �17a�

��u��u�
��u���P = 0, �17b�

���u�
z�u���P = 0, �17c�

�J
u��P = 0. �17d�

Clearly the conditions �17a� and �17b� are always satisfied
at both poles: at the south pole the radius must vanish
�
�=0� and the surface normal must stay parallel to the axis
of revolution �
�=0�, whereas at the north pole the grafted
latex bead dictates both a fixed radius �
�=0� and a fixed
polar angle �
�=0� along the interface parallel �24�. Let us
now ignore for a while the condition �17c� and focus on the
last condition �17d�. In general, because there is no restric-
tion on the meridian arclength between the podal boundaries
�25�—namely because there is no restriction on the isometric
coordinate u—, the variable u must be permitted to vary

freely at the end points, therefore the Beltrami constant of
integration J must be set to zero in order to fulfill the condi-
tion �17d�.

However, since the imposed global constraint �12�, ac-
cording to Eq. �13�, fixes the length of the interval along
which the variable u must vary, the variable u is �intention-
ally� not allowed to vary freely at the end points here. Thus,
here, the Beltrami constant of integration J is �artificially� an
arbitrary constant. Nonetheless, we have to remember that
the imposed global constraint �12� �or �13�� is meant to
mimic true global constraints. Besides, it is noteworthy that
the Beltrami constant of integration J can be absorbed by the
artificial global Lagrange multiplier 	 associated to this glo-
bal constraint. Below, with respect to our approach so far, the
Beltrami constant of integration J will be set to zero in order
to meet the general statement associated to the condition
�17d� and in such a way that any “artifact” introduced by the
imposed constraint �12� will only be carried out by the global
Lagrange multiplier 	. Meanwhile, as an immediate conse-
quence of Eq. �15c�, the discerning reader has noticed that
the local Lagrange multiplier ��u� is a constant:

��u� = �0. �18�

Promptly, having still in mind the geometrical confinement
�6�, the same reader has furthermore resolved Eq. �15a�—
formally at least:

��u� = �0z�u� + �0, �19�

with �0 a constant of integration. Therefore, the Beltrami
identity �16� writes

− 1
2 ��u��u��2 + 1

2sin2 ��u� + �0 cos ��u�

+ �0�z�u�cos ��u� + r�u�sin ��u�� + 	 = 0, �20�

where the reparametrization formula �5� has been used.

B. Generic shape equation

As a matter of fact, for generic closed surfaces of revolu-
tion, the conditions �17a� and �17b� are in general verified
because the local Weyl gauge field � and the polar angle �
do not vary freely at the end points. As concerns spherical
surfaces of revolution, their arbitrary small variations at each
pole have to vanish, either as required by continuity and
symmetry in the absence of any contact, or as dictated along
the junction interface in the presence of a contact. Whereas
for free toroidal surfaces of revolution, because the bound-
aries coincide, their arbitrary small variations on each side of
the common boundary have to coincide. By now, the discern-
ing reader has readily checked that the differentiation of the
Beltrami identity �20� followed by the substitution of the
formulas �4�, �6�, �18�, and �19� actually leads to Eq. �15b� as
expected. In other words, the Beltrami identity �20� is the
generic shape equation of our system. As demonstrated in
Appendix B, the generic shape equation �20� becomes the
customary shape equation found in the literature when the
“artifact” disappears. However, the generic shape equation
�20� may be specialized to spherical surfaces of revolution as
follows.
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C. Topological specialization

As observed before, the bending Hamiltonian �1� can be
specialized with respect to the underlying topology through
the Bogomol’nyi decomposition technique �14,15�: it ap-
pears that the generic shape equation �20� can be specialized
with respect to the underlying topology as well. Indeed, the
vanishing of the constant of integration �0 depends on the
arbitrariness of the small variations of the height z along the
axis of rotation at the boundaries �P, that is to say on the
underlying topology. While for spherical surfaces of revolu-
tion the height z must be free to move along the axis of
revolution at each pole, for free toroidal surfaces of revolu-
tion the small variations of the height z must coincide along
the common boundary: hence in order to meet the boundary
condition �17c�, �0 must be zero when the topology is spheri-
cal, whereas �0 is a priori arbitrary when the topology is
toroidal. Henceforth, when the underlying topology is spheri-
cal, the Beltrami identity or the generic shape equation �20�
becomes

− 1
2 ��u��u��2 + 1

2sin2 ��u� + �0 cos ��u� + 	 = 0. �21�

The reader, who still has in mind the above implementation
of the variational principle, might point out that this topo-
logical specialization allows us to relax the geometrical con-
finement �6� as far as only spherical vesicles of revolution—
governed by an Hamiltonian independent of the height z and
its derivatives—are concerned. This approach has been im-
plicitly used by us to derive the shape equation in the illus-
tration part of a previous paper—namely Ref. �15�. What-
ever, the specialized Beltrami identity �21� is the announced
spherical shape equation. Of course, for more realistic sys-
tems the term inherited from global constraints does not re-
duce to a constant: this concern will be the main focus of our
future investigations. As usual, boundary conditions more
specific to the involved system allow us to establish relation-
ships between the constants of integration. Here, the bound-
ary conditions at the south pole ��=� , �u�=0� give

�0 = 	 � �̃ . �22�

Therefrom, the spherical Beltrami identity �21� reads

− 1
2 ��u��u��2 + 1

2sin2 ��u� + �̃ cos ��u� + �̃ = 0, �23�

which is clearly the integrated form of the double sine-
Gordon equation �26,27�

�uu��u� = sin ��u�cos ��u� − �̃ sin ��u� . �24�

Let us notice that the coefficient �̃ arises from both the
elastic compatibility �4� and the imposed global constraint
�12�, while it is a constant because the spherical version of
the functional �14� does not depend explicitly on �. As
shown below, grafting a round latex bead on our bare spheri-
cal vesicle of revolution allows us to impose a nonvanishing
coefficient �̃ through the prescribed boundary conditions.
Subsequently, it might also allow us to acquire both a local

and a global insight into the competition between bending
energy, elastic compatibility, and global constraints through a
model which fortunately is tractable.

D. Naive analogy

Physically, for the surface normal, the elastic compatibil-
ity �4� acts as a uniform external axial field of magnitude k�̃:
indeed for the related effective elastic Hamiltonian,

Hef f�S� = �k�
P
du 	��u��u��2 + sin2 ��u� + 2�̃ cos ��u�
 ,

�25�

the Euler-Lagrange equation with respect to � is the double
sine-Gordon equation �24�; for spherical surfaces of revolu-
tion S0, the effective Hamiltonian �25� decomposes with re-
spect to the Bogomol’nyi technique into

Heff�S0� =�k�
P
du ��u��u� − sin ��u��2

+ 2�k�̃�
P
du cos ��u� + 4�k . �26�

IV. LOCAL VERSUS GLOBAL

A. Exact solution

Fortunately a suitable solution of Eq. �23� �or �24�� gen-
eralizing the solution �10� exists that meets the interface con-
ditions imposed by the grafted latex bead as follows. First,
we easily check by direct substitution that the solution

���u��� = 2 arctan��1−�
1+� cosh �1+�

1−�u + sinh �1+�
1−�u� �27�

satisfies the second order nonlinear differential equation �24�
with

�̃ =
2�

1 − �
or � =

�̃

2 + �̃
, �28�

whereas it reduces to the solution �10� when the parameter �
vanishes. Solving the relevant Gauss-Weingarten equations
under appropriate conditions �Appendix A� leads, after de-
tailed calculations, to an exact solution for the surface of
revolution, which is the relevant generalization of Eq. �11�:
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r��u��� = 4
� �1+�+�1+3�

�1+�+�1−� ��
1−�
1+�

��1−� + �1+3��2

��1 + �1 − �2 tanh �1+�
1−�u�e−u,

z��u��� =
2

1 + �1+3�
1−�

�2
� �1+�+�1+3�

�1+�+�1−� ��
1−�
1+�

�1−�
1+� + �1+3�

1+�

�
e−u

cosh �1+�
1−�u

− 1� , �29�

and which smoothly joins the concavely bound spherical
northern �bead� cap to the vesicle surface when the interface
parallel u= û �24� and the parameter � obey

0  � � 1, r��û��� = �̂, ���û��� = − arcsin
�̂

�
,

ln� �1+�−�1−�
�1+�+�1+3��  �1+�

1−� û 
1
2 ln� �1+�−�1−�

�1+�+�1−�� , �30�

� and �̂ being, respectively, the latex bead radius and the
encapsulated radius, the isometric coordinate u varying from
û to +� �see Fig. 1 and the inset of Fig. 2�. Basic analytical
considerations always ensure that the system �30� has one
unique solution which can be found numerically without dif-
ficulty. The scale and the position in space have been chosen
with respect to the equator �24�: its radius is set to unity �its
scale� while its plane passes through the origin �its position�.
It can be readily verified that the surface �29� approaches the
round sphere �11�, as expected, when the parameter � tends

to zero. In fact, the interface conditions �30� essentially re-
quire that at the proper place �the inequalities� the normal
lines of the vesicle surface and of the round latex bead sur-
face coincide �the equalities� �4,15,28�.

When the latex bead is very tightly bound to the vesicle—
biotinylated lipids can be employed to render vesicles very
sticky to streptavidin coated latex beads �4�—these junction
conditions are reasonable at the vesicle scale, nevertheless at
the membrane scale a more detailed treatment may be
needed since the curvature experiences a discontinuity along
the junction parallel—they are the ones implicitly assumed
in Ref. �4�. The relative magnitude �̃ of the effective uniform
external field, according to the equality �28� and the interface
conditions �30�, is determined by the latex bead radius � and
the encapsulated radius �̂: for physically relevant latex beads,
the relative magnitude �̃ increases as either the relative en-
capsulated radius �̂ /� or the latex bead radius � increases.

B. Hat-model limit

Finally, for complete encapsulation ��̂=�� in the limit
��1, the “hat-model” approximation �4,28,29� is recovered
as the axisymmetric surface �29� experiences complete con-
tact of order O��2 ln2 �� with a catenoid along the corre-
sponding interface parallel, which then fuses itself with the
�neck� equator u=−�1−�

1+� ln� �1+�+�1+3�
�1+�−�1−�

�. After the coordinate

shift u=v−�1−�
1+� ln� �1+�+�1+3�

�1+�−�1−�
�, we get

r��v��� = 2� cosh v + 2�2 ln � cosh v + ¯ ,

z��v��� = 1 + 2��ln1
2� + 1

2� + 2�v + �2 ln2 � + ¯ ;

since r��v̂=0���=2�+O��2 ln2 ��, the limit ��1 is here
equivalent to the limit ��1, thus it applies to small latex

r

z

FIG. 1. �Color online� Cross-sectional profiles of a spherical
vesicle of revolution distorted by a round latex bead grafted at its
north pole with respect to different encapsulated radii �̂. The bold
arcs indicate the polar cap imposed by the bead. Dimensionless
latex bead radius �=0.15; relative encapsulated radii �̂ /� from out-
side to inside: 0, 1
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FIG. 2. �Color online� The Gaussian curvature K versus the
length s along meridians from the south pole for different encapsu-
lated radii �̂ of the northern grafted latex bead: the encapsulated
radius �̂ increases in the direction of the arrows. Dimensionless
latex bead radius �=0.15; relative encapsulated radii �̂ /� with re-
spect to the arrows: 0, 1

4 , 3
8 , 1

2 , 5
8 , 3

4 , 7
8 , and 1. The inset shows the

geometry at the north pole: the dashed circle profiles the latex bead,
and the bold arc the polar cap imposed by it; the arrows indicate the
nomenclature: the latex bead radius � and the encapsulated radius �̂.
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beads. More detailed analysis may be required for arbitrary
encapsulations �0��̂��.

C. Geometrical frustration

Next, while keeping in mind that grafting a second iden-
tical latex bead antipodal to the first one �i.e., at the south
pole� cancels the coefficient �̃ in Eq. �24� as it was implicitly
shown in Ref. �15�, we investigate the global deformation
experienced by our bare spherical vesicle. First, for the sur-
face of revolution �29�, the length s��u��� along meridians
�24� from the south pole u= +� to the parallel u, the Gauss-
ian curvature K��u���, and the mean curvature H��u��� along
the parallel u are found to take, respectively, the exact forms

s�u��� = 2
� �1+�+�1+3�

�1+�+�1−� ��
1−�
1+�

�1 + �1+3�
1−� �2 ��1 − �1+�

1−��2

+ 2��− e−2�1+�
1−�

u,1, 1
2
�1−�

1+���e−u, �31�

K�u��� =
1

16

�1 − �2�3/2�1 + �1+3�
1−� �4

� �1+�+�1+3�
�1+�+�1−� �2�1−�

1+�

�
�1 − �2 cosh 2�1+�

1−�u + sinh 2�1+�
1−�u

�cosh �1+�
1−�u + �1 − �2 sinh �1+�

1−�u�4e2u,

�32�

H�u��� = −
1

4

�1 − �2�1/2�1 + �1+3�
1−� �2

� �1+�+�1+3�
�1+�+�1−� ��

1−�
1+�

�
eu

cosh �1+�
1−�u + �1 − �2 sinh �1+�

1−�u
, �33�

with � denoting the Lerch transcendental function �30�. Plot-
ting the Gaussian curvature K as a function of the meridian
arclength s from the south pole reveals, as clearly exhibited
in Fig. 2, that the surface of our bare vesicle distorted by a
grafted round latex bead surprisingly splits into three do-
mains: a strong curvature gradient region in the neighbor-
hood of the bead; a weak curvature gradient zone around the
equator; and an unexpectedly flat southern region, as the cur-
vature amazingly tends to zero at the south pole. On the
other hand, the presence �or absence� of an antipodal grafted
latex bead does not seem to radically affect the profiles
around the grafted latex bead, as is evident by comparing
Fig. 1 with the corresponding one in Ref. �15�. The global
deformation of our bare spherical vesicle can be understood
as follows. By imposing a concavely bound spherical cap,
the grafted round latex bead prevents the bending Hamil-
tonian �7� �or �8�� from reaching its global minimum and
brings into play the elastic compatibility �4�: the former phe-
nomenon is revealed through the Bogomol’nyi decomposi-
tion technique, the latter can be mimicked by an effective
uniform external axial field interacting with the surface nor-
mal.

This key result concisely expressed in the decomposed
effective Hamiltonian �26� leads to a clear comprehension of
the geometrical frustration experienced by our bare spherical
vesicle: the surface normal attempts to shape our bare spheri-
cal vesicle into a round sphere to saturate that part of the
effective Hamiltonian �26� which is inherited from the bend-
ing Hamiltonian, whereas the effective uniform external
axial field tries to antialign the surface normal to minimize
that part of the effective Hamiltonian �26� which mimics a
uniform external axial interaction. Ultimately the alteration
due to the presence �or absence� of an antipodal grafted latex
bead resolves the competition between the two parts: the
highly distorted region in the neighborhood of the grafted
bead is mainly governed by the shape part which tends to
make it round; by contrast, the essentially flat region antipo-
dal to the grafted bead is driven by the effective uniform
external axial field which flattens it by forcing the local cur-
vature to vanish while the shape part tries to maintain it
round. The elastic compatibility condition �4� globally “re-
leases” the bending Hamiltonian �7� �or �8�� in the sense that
omitting the elastic compatibility condition �4� is tantamount
to enhancing the bending energy by attaching an antipodal
latex bead.

V. CONCLUSION

In conclusion, we have demonstrated that bare spherical
vesicles distorted by a grafted latex bead might be treated by
taking into account nonlinearity in the bending elasticity
through the Bogomol’nyi decomposition technique and elas-
tic compatibility. We have obtained and analyzed a suitable
exact solution, which recovers the hat-model approximation
�4,28� in the limit of small latex beads, through an effective
field theory. The present study provides a physically moti-
vated example of pure geometrical frustration induced by a
mesoscopic particle. Finally, whereas mesoscopic inclusion
problems are typically treated by considering spherical bio-
logical vesicles as infinite planes �2,4,28,29,31�, we have
shown that simple topological arguments may allow us to
tackle such problems by emphasizing the underlying spheri-
cal topology. We have also demonstrated how our approach
can recover the relevant shape equation. Nevertheless, in or-
der to overcome one drawback of our exact solution—viz.,
the use of an unphysical global constraint which is meant to
mimic the usual physical global constraints—, our suggested
approach may be further augmented by accounting for the
physical global constraints—namely, the total mean curva-
ture, area, and volume constraints �9,22�—and, eventually,
by connecting it to other geometrical approaches �5,32–35�.
Also, by applying it to vesicle systems exhibiting pertinent
global distortions—such as toroidal vesicles �36�, vesicle
systems exhibiting domains �37�, vesicles distorted by ad-
sorbed objects �4�, cylindrical and other inclusions in
vesicles �38–43�, and so forth—, our suggested approach
might lead to more valuable solutions, but they are difficult
to find analytically.
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APPENDIX A: SURFACES OF REVOLUTION IN
ISOMETRIC AZIMUTHAL COORDINATES

1. Metric and shape tensors

Let us represent any surface of revolution in azimuthal
coordinates �v ,�� by

X�v,�� = �r�v�cos �,r�v�sin �,z�v�� , �A1�

where the radius r�v� �0r�v�� and the height z�v� are both
sufficiently differentiable functions of the coordinate v. Then
the metric tensor gij has the following components �16,17�:

gvv = �vX�v,�� · �vX�v,�� = ��vr�v��2 + ��vz�v��2, �A2a�

gv� = g�v = �vX�v,�� · ��X�v,�� = 0, �A2b�

g�� = ��X�v,�� · ��X�v,�� = r�v�2. �A2c�

Before computing the shape tensor bij, the outward surface

unit normal vector N̂�v ,�� may be computed as �16,17�

N̂�v,�� =
�vX�v,�� � ��X�v,��

�vX�v,�� � ��X�v,��

=
1

���vr�v��2 + ��vz�v��2

��− �vz�v�cos �,− �vz�v�sin �,�vr�v�� .

�A3�

Hence �16,17�

bvv = �vvX�v,�� · N̂�v,�� =
�vvz�v��vr�v� − �vvr�v��vz�v�

���vr�v��2 + ��vz�v��2
,

�A4a�

bv� = b�v = �v�X�v,�� · N̂�v,�� = 0, �A4b�

b�� = ���X�v,�� · N̂�v,�� =
r�v��vz�v�

���vr�v��2 + ��vz�v��2
. �A4c�

Next we may introduce the polar angle ��v� associated with

N̂�v ,��:

��v� = arctan�− �vz�v�,�vr�v�� , �A5�

which satisfies the �useful� relationships:

cos ��v� =
�vr�v�

���vr�v��2 + ��vz�v��2
, �A6a�

sin ��v� =
− �vz�v�

���vr�v��2 + ��vz�v��2
, �A6b�

�v��v� =
�vvr�v��vz�v� − �vvz�v��vr�v�

��vr�v��2 + ��vz�v��2 . �A6c�

Thus, whereas the outward surface unit normal vector

N̂�v ,�� takes the desired form

N̂�v,�� = �sin ��v�cos �,sin ��v�sin �,cos ��v�� ,

�A7�

the components of the shape tensor bij are readily written as

bvv = − ���vr�v��2 + ��vz�v��2�v��v� , �A8a�

bv� = b�v = 0, �A8b�

b�� = − r�v�sin ��v� . �A8c�

Now let us transform to isometric coordinates �u ,�� �16,44�
by the transformation

u = �v

dw
���wr�w��2 + ��wz�w��2

r�w�
, �A9�

which yields a conformally flat metric �44�. As a matter of
fact, the components of the metric tensor become

guu = r�u�2, �A10a�

gu� = g�u = 0, �A10b�

g�� = r�u�2, �A10c�

while the components of the shape tensor attain the form

buu = − r�u��u��u� , �A11a�

bu� = b�u = 0, �A11b�

b�� = − r�u�sin ��u� . �A11c�

Finally, to emphasize the conformally flat nature of the met-
ric and/or the isometric nature of the coordinates �u ,��, we
may introduce the local Weyl gauge field ��u� �44�:

��u� = ln�r�u�� . �A12�

To summarize, for any surface of revolution the metric tensor
gij and the shape tensor bij can take, in �isometric� azimuthal
coordinates �u ,��, the form

guu = g�� = e2��u�, �A13�

buu = − e��u��u��u� and b�� = − e��u� sin ��u� ,

�A14�

respectively.

2. Elastic compatibility conditions

Next, with the perspective of computing the elastic com-
patibility conditions �the Gauss-Codazzi-Peterson equations�
�17� we may compute the Christoffel symbols of the second
kind �k

ij �17,44�,
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�k
ij = 1

2gkl��iglj + � jgli − �lgij� , �A15�

and then the Riemann tensor Rijkl �17,44�,

Rijkl = gim��k�
m

lj − �l�
m

kj + �m
kn�n

lj − �m
ln�m

kj� .

�A16�

In isometric azimuthal coordinates �u ,��, the nonvanishing
Christoffel symbols of the second kind �k

ij verify

�u
uu�u� = − �u

���u� = ��
u��u� = ��

�u�u� = �u��u� ,

�A17�

and the nonvanishing component of the Riemann tensor Rijkl
is

Ru�u� = − e2��u��uu��u� . �A18�

Therefore the Gauss equations �17�

Rijkl = bikb jl − bilb jk �A19�

simplify to the equation

�uu��u� = − sin ��u��u��u� , �A20�

while the equations of Codazzi and Peterson �17�,

�kbij − �m
ikbmj = � jbik − �n

ijbnk, �A21�

yield

�u��u� = cos ��u� , �A22�

which clearly satisfies the Gauss equation �A20�. In short,
the elastic compatibility conditions �A19�–�A21� associated
with the metric tensor �A13� coupled to the shape tensor
�A14� reduce to Eq. �A22�.

3. Fundamental theorem of surface theory

Next we shall show the converse of the previous results,
namely, that any pair of diagonal second-rank tensors
�gij ,bij�, which in �isometric� azimuthal coordinates �u ,��
takes the form �A13�–�A14� and obeys the elastic compat-
ibility condition �A22�, where the local Weyl gauge field �
and the polar angle � of the outward surface normal are
sufficiently differentiable functions of u, corresponds to a
unique axisymmetric surface—modulo its position in space.
In fact, this converse theorem is rather a simple illustration
of the fundamental theorem of surface theory �16,17�. The
general demonstration of the fundamental theorem of surface
theory �16� consists in proving that the Gauss surface equa-
tions �16,17�

�ijX = �m
ij�mX + bijN̂ , �A23�

combined with the Weingarten equations �16,17�

�iN̂ = − bm
i�mX , �A24�

under the additional conditions �16�

N̂2 = 1, �iX · N̂ = 0,

�iX · � jX = gij, �ijX · N̂ = bij , �A25�

determine a unique surface X—modulo its position in

space—with N̂ as its outward surface unit normal vector. In
our case, the Gauss surface equations �A23� reduce to

�uuX�u,�� = + cos ��u��uX�u,�� − e��u��u��u�N̂�u,�� ,

�A26a�

�u�X�u,�� = + cos ��u���X�u,�� , �A26b�

���X�u,�� = − cos ��u��uX�u,�� − e��u�sin ��u�N̂�u,�� ,

�A26c�

and the Weingarten equations �A24� to

�uN̂�u,�� = e−��u��u��u��uX�u,�� , �A27a�

��N̂�u,�� = e−��u� sin ��u���X�u,�� , �A27b�

while the additional conditions �A25� yield

N̂2�u,�� = 1, �A28a�

�uX�u,�� · N̂�u,�� = 0, �A28b�

��X�u,�� · N̂�u,�� = 0, �A28c�

�uX�u,�� · �uX�u,�� = e2��u�, �A28d�

�uX�u,�� · ��X�u,�� = 0, �A28e�

��X�u,�� · ��X�u,�� = e2��u�, �A28f�

�uuX�u,�� · N̂�u,�� = − e��u��u��u� , �A28g�

�u�X�u,�� · N̂�u,�� = 0, �A28h�

���X�u,�� · N̂�u,�� = − e��u� sin ��u� . �A28i�

Note that, provided that conditions �A28a�–�A28c� are met,
conditions �A28g�–�A28i� are automatically satisfied since
then they straightaway follow from Eqs. �A26a�–�A26c�, re-
spectively. By definition, on the other hand, the outward sur-

face unit normal vector N̂�u ,�� expresses as

N̂�u,�� =
�uX�u,�� � ��X�u,��

�uX�u,�� � ��X�u,��
, �A29�

which, with respect to conditions �A28d�–�A28f�, writes

N̂�u,�� = e−2��u��uX�u,�� � ��X�u,�� , �A30�

as we find

��uX�u,�� � ��X�u,���2 = e4��u�. �A31�

Conditions �A28a�–�A28c� are clearly fulfilled. In short, only
the additional conditions �A28d�–�A28f� may be pertinent in
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due course. By elimination of N̂�u ,��, Eqs. �A26c�, �A26b�,
and �A27b� hold:

����X�u,�� + ��X�u,�� = 0 �A32�

or

X�u,�� = cos � A�u� + sin � B�u� + C�u� . �A33�

Then Eq. �A26b� gives

�uA�u� = �u��u�A�u� and �uB�u� = �u��u�B�u�
�A34�

or

A�u� = e��u�A and B�u� = e��u�B , �A35�

where A and B are constant vectors of integration. Also,
formula �A33� writes

X�u,�� = e��u��cos � A + sin � B� + C�u� . �A36�

Moreover, eliminating N̂�u ,�� between Eqs. �A26a� and
�A26c�, we obtain

sin ��u��uuX�u,�� − �u��u����X�u,��

= cos ��u��sin ��u� + �u��u���uX�u,�� . �A37�

Substitution of formula �A36� into Eq. �A37� yields

�uuC�u� = ��u��u� + cot ��u��u��u���uC�u� �A38�

or

�uC�u� = − e��u� sin ��u� C , �A39�

where C is a constant vector of integration. So, we readily
have

C�u� = − �u

dw e��w�sin ��w� C + D , �A40�

with D a constant vector of integration. Henceforth, formula
�A36� becomes

X�u,�� = e��u��cos � A + sin � B�

− �v

dw e��w� sin ��w� C + D . �A41�

We must next choose the constant vectors of integration A,
B, C, and D so as to satisfy the pertinent additional condi-
tions �A28d�–�A28f�. First, from condition �A28f� we obtain

��X�u,�� · ��X�u,�� = e2��u�

= 1
2e2��u���A2 + B2� + cos 2� �A2 − B2� − sin 2� A · B�

�A42�

or

A2 = B2 = 1 and A · B = 0. �A43�

Therefrom, condition �A28e� holds:

�uX�u,�� · ��X�u,�� = 0

= e2��u� sin ��u��sin � A · C − cos � B · C� ,

�A44�

or

A · C = B · C = 0. �A45�

Then, condition �A28d� reads

�uX�u,�� · �uX�u,�� = e2��u� = e2��u�C2 �A46�

or

C2 = 1. �A47�

In other words, the three constant vectors of integration A,
B, and C must form an orthonormal triplet of constant vec-
tors. Henceforth, since no additional condition has to be ful-
filled, the constant vector of integration D is really an arbi-
trary constant vector, namely an arbitrary translation. In
order to determine the orientation of the orthonormal triplet,
we may explicitly compute the outward surface unit normal

vector N̂�u ,��:

N̂�u,�� = sin ��u�cos � B � C + sin ��u�sin � C � A

+ cos ��u� A � B . �A48�

By inserting previous formula �A48� and formula �A41�, Eq.
�A27b� holds:

C = A � B , �A49�

thus the orthonormal triplet is direct. To stress the nature of
the direct orthonormal triplet �A ,B ,C� and of the transla-
tional vector D, we may denote them by �êx , êy , êz� and t,
respectively: eventually formula �A41� may read

X�u,�� = e��u��cos � êx + sin � êy�

− �v

dw e��w� sin ��w� êz + t , �A50�

which is the equation of an axisymmetric surface revolving
around the axis êz shifted along t with radius r�u� and height
z�u� given by

r�u� = e��u� �A51a�

and

z�u� = − �u

dw e��w� sin ��w� . �A51b�

By the choice of the direct orthonormal triplet �êx , êy , êz� and
of the translation t, the surface of revolution �A50� can be
placed in any position in space. Finally let us notice that the
ultimate differential equation to integrate �A39� translates
within this choice of notation into

�uz�u� = − e��u� sin ��u� . �A52�
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4. Curvatures

Whereas the intrinsic curvature �or the Gaussian curva-
ture� K characterizes the metric tensor gij through the Rie-
mann tensor Rijkl,

K = 1
2gijgklRikjl, �A53�

the mean curvature H and the extrinsic curvature G charac-
terize the shape tensor bij: the mean curvature H is its half
trace,

H = 1
2gijbij , �A54�

while the extrinsic curvature G is its determinant,

G = 1
2eijeklbikb jl. �A55�

The tensor eij being the totally antisymmetric tensor:

eij = ��g��ij with �ij = � 0 + 1

− 1 0
� . �A56�

Therefore in isometric azimuthal coordinates �u ,��, the in-
trinsic curvature K holds:

K�u� = − e−2��u��uu��u� �A57�

according to formula �A18�. On the other hand, the mean
curvature H yields

H�u� = − 1
2e−��u���u��u� + sin ��u�� , �A58�

and the extrinsic curvature G verifies

G�u� = e−2��u� sin ��u��u��u� . �A59�

By invoking the elastic compatibility condition �A22�, it is
easily checked that the intrinsic curvature K and the extrinsic
curvature G are effectively the same as asserted by the Gauss
theorem.

APPENDIX B: RECOVERING THE SHAPE EQUATION
IN THE ABSENCE OF “ARTIFACT”

The customary generic shape equation corresponding to
our system without the “artifact” is the following covariant
equation �25�:

1
2�H + H�H2 − K� = 0, �B1�

where � denotes the Laplacian, H the mean curvature, and K
the extrinsic curvature. Once the Laplacian is expanded, the
generic shape equation �B1� writes

1
2 �gil�l − gmn�i

mn��iH + H�H2 − K� = 0, �B2�

or, in isometric azimuthal coordinates �u ,��,
1
2e−2��u��uuH�u� + H�u��H2�u� − K�u�� = 0. �B3�

Substituting formulas �A57� and �A58� into previous Eq.
�B3� leads to

��u − cos ��u����uu��u� − sin ��u�cos ��u��

+ 1
2 ��u��u� − sin ��u��2��u��u� + sin ��u�� = 0.

�B4�

On the other hand, our generic shape equation �20� without
the “artifact” reads

− 1
2 ��u��u��2 + 1

2sin2 ��u� + �0 cos ��u�

+ �0�z�u�cos ��u� + r�u�sin ��u�� = 0. �B5�

In order to compare the shape equation �B5� with the general
shape equation �B4�, let us first transform it in a form free of
radius r�u�, height z�u�, and constants of integration �0 and
�0 as follows. Since formulas �A51a�, �A22�, and �A52� yield
the equality

�uz�u�cos ��u� + �ur�u�sin ��u� = 0, �B6�

the differentiation of Eq. �B5� readily gives

�uu��u� − sin ��u�cos ��u� = − �0 sin ��u�

+ �0�− z�u�sin ��u� + r�u�cos ��u�� . �B7�

By applying the operator ��u−cos ��u�� to both sides of pre-
vious equality �B7�, we obtain

��u − cos ��u����uu��u� − sin ��u�cos ��u��

= − 	�0 cos ��u� + �0�z�u�cos ��u� + r�u�sin ��u��


���u��u� − sin ��u�� , �B8�

after simplification of the right-hand side. Then the insertion
of formula �B5� into previous Eq. �B8� gives Eq. �B4�.

In summary, as announced, the two shape equations �B5�
and �B4� are exactly the same.
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